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Abstract: - Inertial manifolds of Navier-Stokes equations have been calculated approximately up to now. In this 
paper, drawing upon advanced ingredients of differential geometry and Lie groups a novel methodology is 
presented for finding the inertial manifolds of ( )12 + -dimensional Navier-Stokes equation. It has been shown 
that the geometric notions about Lie groups and Lie algebras such as transformation groups, one-parameter 
groups, integral submanifolds, adjoint representations, group-invariant solutions and optimal systems not only 
cover all of the properties of inertial manifolds, but also result to the exact decomposition of the velocity field 
of the flow of Navier-Stokes equation by proposing the coordinate chart for it. In this way, the new procedure 
outperforms the numerical estimation methods by providing the analytic solution of the inertial manifolds. 
Also, the proposed methodology can be applied to the general problems by searching the optimal systems of 
them. Furthermore, this geometric approach results to the reduction theory which transforms these partial 
differential equations into a system of differential equations with fewer variables. 
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1 Introduction 
An inertial manifold is a smooth finite dimensional 
manifold of the phase space which is positively 
invariant, attracts exponentially all orbits, and 
contains the global attractor. Finding this portion or 
surface of the phase space for Navier-Stokes 
equation (NSE), as the very starting point of all 
equations in fluid mechanics, is an open problem, 
[1-3]. The approximate inertial manifolds can be 
obtained by some numerical methods, [4-5]. The 
explanation of the problem and a review of its 
approximate solution have been proposed in 
Sections 2.1 and 2.2.  

On the other hand, finding the group-invariant 
solutions of a complicated system of partial 
differential equations (PDEs) aroused from some 
physically important problem is a well-known 
technique in mathematics and physics. Consider Ξ  
is a system of partial differential equations which 
defined over an open subset qpUXM RR ×≅×⊂ of 
the space of independent and dependent variables 
and G  be a local group of transformations acting on 
manifold M . Roughly, a solution ( )xu=f  of the 
system is said to be G -invariant if it remains 
unchanged by all the group transformations in G , 
meaning that for each Gg ∈ , the functions f and 

fg.  agree on their common domains of definition. 

In fact, these solutions are large classes of special 
explicit solutions which are characterized by their 
invariance under some symmetry group of the 
system of PDEs. The machinery of Lie algebra 
theory provides a systematic method to search for 
these special group invariant solutions. For the 
globally attraction property of inertial manifolds, the 
examination of the optimal system of these group 
invariant solutions. 

In effect, the exponential property inserted in the 
definition of inertial manifolds and the main 
problem about the decomposition of the velocity 
field of NSE can be solved by Frobenius' Theorem. 
For analytic calculation of inertial manifolds, some 
geometric notions has been organized in Section 3, 
step by step, which result to the exact presentation 
of them.  

In Theorem 2 of Section 4, the main problem has 
been proved in notions of optimal systems of 
symmetry-group invariant solutions of NSE. This 
geometric approach not only translates the notion of 
inertial manifolds to the new concepts of optimal 
systems, but also results to the reduction theory. 

In fact, for a system of differential equations, 
symmetry group can transform it into a system of 
differential equations with fewer variables which are 
more easily solved in principal than those PDEs, [6-
7].  
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Also, as in Corollary 1 of Section 4, the proposed 
methodology results in the exact decomposition of 
the velocity field of NSE and the presentation of 
coordinate chart for it. 
 
 

2 Preliminaries 
2.1 Explanation of the problem about 
Navier-Stokes equation (NSE) 
This fact that turbulent flows have a finite number 
of degrees of freedom strongly suggests that, for 
practical purposes, it might be possible to describe 
the evolution of a turbulent flow by a finite, 
reasonably sized set of parameters, [1]. 

  Approximate inertial manifolds give (in an 
approximate sense) a practical answer to this 
question. For this, consider the decomposition of the 
velocity field of the flow ( )txu = u , , into two parts, 

u = y+z , (1) 
where ( )txy = y ,  is a variable with relatively few 
dimensions, while ( )txz = z , , the remaining part, is 
somehow enslaved by y . The relation between 
these two parts of the flow could be represented by a 
functional relation of the form 

( )yz = R .   (2) 
Generally, such decomposition can be carried out 

exactly when there is an adequate separation of 
scales. That is not the case for turbulent flows, but 
an approximate decomposition is possible. For 
example, Fourier representation of a flow is a 
natural candidate to this.   

An exact relation of the form (2) leads to a 
system of ordinary differential equations for the 
evolution of the flow. Indeed, the functional 
equation form of the Navier-Stokes equation is 

 
( ) = fu+vAu+B

dt
du , (3) 

with the decomposition (1) in mind and with the 
representations of y  and z , it can formally obtain 
the equations corresponding to the evolution of the 
low and high modes by applying to (3) the Galerkin 
projector mP  and its complement mm  =I-PQ . Then, 

( ) ( ) .,  f =Qy+zB+vAz+Q
dt
dz f =Py+zB+vAy+P

dt
dy

mmmm  

If an exact relation of the form (2) holds, then the 
high modes are given in terms of the low modes and 
hence only the evolution equation for the low modes 

in the form ( )( )  f =Pyy+RB+vAy+P
dt
dy

mm  can be 

considered. This is a system of ordinary differential 
equations. However, the exact relation (2) is not 
known to exist. The existence of such a relation has 
been proved (in a mathematically rigorous way) for 
a number of partial differential equations modelling 
turbulent phenomena in mechanics, chemistry, and 
other fields.  
Problem. The portion or surface of the phase space 
(the infinite-dimensional function space for the 
velocity field) defined by the relation (2) is known 
as an inertial manifold. It is still an open question 
whether the 2-dimensional or 3-dimensional Navier-
Stokes equations possesses such an inertial 
manifold. 
Approximate solution. More plausible is the 
existence of an approximate relation of the form (2), 
that is, ( )yRz ~≈ . More precisely, one could have that 
the flow ( ) ( ) ( ) t+zt=ytu is close to ( ) ( )( ) ty+Rty ~ in the 
sense that, for all times (or, at least, for large t ), 

( ) ( )( ) ε<ty-Rtz ~ ,    (4) 
in some suitable norm. When the relation (4) holds, 
the manifold ( )y=Rz ~~  is called an approximate 
inertial manifold. It provides one with an 
approximate law relating the high modes to the low 
modes. In contrast with inertial manifolds, a number 
of approximate inertial manifolds are known to exist 
and their explicit expressions have been derived. In 
this regard, the Galerkin approximation of the 
Navier-Stokes equations corresponds to the flat 
manifold 0~ ≡z .  

For a given approximate inertial manifold  
( )y=Rz ~~ , one can consider an approximation to the 

NSE by the finite-dimensional system 

( )( )  f =Py+RyB+Py+vA
dt
yd

mm
~~~~

     (5) 

Note that the solution ( )ty=y ~~  of this system does 
not coincide with the low-mode part of the exact 
flow, ( ) ( )tu=Pty m , because the enslaving is not 
exact. Nevertheless, one can expect that, the smaller 
the error ε  in (4), the better the approximation (5) 
in the sense that ( ) ( )( ) ty+Rty ~~ would be closer to the 
exact solution ( )tu .  

Another practical aspect of the concept of an 
approximate inertial manifold is that, even when an 
exact inertial manifold is known to exist, it might be 
more useful (for computational purposes) to have on 
hand an explicit form for an approximate inertial 
manifold, since inertial manifolds are usually 
obtained implicitly, [4-5]. 
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In two following sections, some necessary 
notions from inertial manifolds, differential 
geometry and Lie groups have been expressed to 
give the exact inertial manifolds for NSE. 

 
 

2.1 Inertial manifolds   
As mentioned before, an inertial manifold is finite-
dimensional even if the original system is infinite-
dimensional, and because most of the dynamics for 
the system takes place on the inertial manifold, 
studying the dynamics on an inertial manifold 
produces a considerable simplification in the study 
of the dynamics of the original system, [8]. 

Definition 1. An inertial manifold for a 
dynamical semigroup ( )tS  is a smooth manifold M  
such that  

1. M  is of finite dimension,  
2. ( ) MMtS ⊆  for all times 0≥t ,  
3. M  attracts all solutions exponentially quickly, 
that is, for every initial value Hu ∈0  there exist 
constants 0>jc  such that 

( )( ) ( )t-ccMutSdist 2exp, 10 ≤ .  
The restriction of the differential equation 

( )udt=Fdu  to the inertial manifold M  is therefore 
a well-defined finite-dimensional system called the 
inertial system.  

Subtly, there is a difference between a manifold 
being attractive, and solutions on the manifold being 
attractive. Nonetheless, under appropriate conditions 
the inertial system possesses so-called asymptotic 
completeness; that is, every solution of the 
differential equation has a companion solution lying 
in M  and producing the same behavior for large 
time means that for all 0u  there exists Mu ∈0  and 
possibly a time shift 0≥τ  such that 

( ) ( )( ) 0+, 00 →utSutSdist τ  as ∞→t . 

 
3 Theoretical Background on 

differential geometry and Lie 
groups     

In this section, some main concepts of differential 
geometry and Lie groups will be reviewed, step by 
step to make the paper essentially self-contained, [9-
11].  

1) An m -dimensional manifold is a set M , 
together with a countable collection of subsets 

MU ⊂α  called coordinate charts, and one-to-one 
functions αααχ VU →:  onto connected open 
subsets mV R⊂α , called local coordinate maps, 

which satisfy the following properties: The 
coordinate charts cover M ; 



α
α=MU . On the 

overlap of any pair of coordinate charts βα UU   

the map ( ) ( )βαββαααβ χχχχ UUUU-
 →:1  is 

a smooth (infinitely differentiable) function. If 
αUx∈ , βUx ∈~  are distinct points of M , then 

there exist open subsets αVW ⊂ , βVW ⊂
~ , with 

( ) Wx ∈αχ , ( ) Wx ~
∈βχ , satisfying ( ) ( )WW -- 11

βα χχ   
is an empty set. A submanifold of M  is a subset 

MN ⊂ , together with a smooth, one-to-one map 
MNN ⊂→

~:φ  satisfying the maximal rank 
condition and ( )NN= ~φ  is the image of φ .  

2) An r -parameter Lie group is a group G  
which also carries the structure of an r -dimensional 
smooth manifold in such a way that both the group 
operation GGGm →×: , ( )  . , h=ghgm , Ghg ∈,  and 
the inversion GGi →: , ( ) 1-=ggi , Gg∈ , are smooth 
maps between manifolds. A Lie subgroup H  of a 
Lie group G  is given by a submanifold GH →

~:φ , 
where H~  itself is a Lie group, ( )HH= ~φ  is the image 
of φ , and φ  is a Lie group homomorphism.  
A local group of transformations acting on a 
manifold M  is given by a (local) Lie group G , an 
open subset U , with { } MGMe ×⊂⊂× U , which is 
the domain of definition of the group action, and a 
smooth map M→Ψ U:  with this property that if 
( ) U∈xh, , ( )( ) U∈Ψ xhg ,, , and also ( ) U∈xhg ,. , then 

( )( ) ( )xhg=xhg ,.,, ΨΨΨ  or for brevity, ( ) ( ) xhg=xhg .... , 
Mx∈ . Also, for all Mx∈ , ( )=xxe,Ψ  or x=xe. , for 

all Mx∈ .  
The subset MO ⊂  is an orbit of a local 

transformation group G , provided it satisfies the 
following conditions: If Ox∈ , Gg∈  and xg.  is 
defined, then Oxg ∈. .  

3) Let C  is a smooth curve on a manifold M , 
parametrized by MI →:φ , where I  is a subinterval 
of R . In local coordinates ( )mxxx= ,,1

 , C  is 
given by m  smooth functions ( ) ( ) ( )( )εφεφεφ m= ,,1

  
of the real variable ε . At each point ( )εφx=  of C  
the curve has a tangent vector, namely the derivative 
( ) ( ) ( )( )εφεφεφεφ m=dd= 



 ,,1 . The collection of all 
tangent vectors to all possible curves passing 
through a given point x  in M  is called the tangent 
space to M  at x , and is denoted by xTM | .  

If M  is an m -dimensional manifold, then xTM |  
is an m -dimensional vector space, with 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER
Atefeh Hasan-Zadeh, 

Mohammad Mohammadi Khanaposhtani

E-ISSN: 2224-3461 97 Volume 13, 2018



 

 

{ }mxx ∂∂∂∂ ,,1
  providing a basis for xTM |  in the 

given local coordinates. The collection of all tangent 
spaces corresponding to all points x  in M  is called 
the tangent bundle of M , denoted by 



Mx
xTMTM=

∈

| .  A vector field has the form 

( ) ( ) ( ) mx x
x

x
x

x
x=v

∂

∂

∂

∂

∂

∂ m
2

2
1

1 +++| ξξξ  , in local 

coordinates  ( )mxx ,,1
 , where each ( )xiξ  is a 

smooth function of x . An integral curve of a vector 
field v is a smooth parameterized curve ( )εφx=  
whose tangent vector at any point coincides with the 
value of v  at the same point: ( ) ( )εφεφ |=v  for all ε .  

The flow generated by a vector field is the same 
as a local group action of the Lie group R  on the 
manifold M , often called a one-parameter group of 
transformations. The vector field v  is called the 
infinitesimal generator of the action. The orbits of 
the one-parameter group action are the maximal 
integral curves of the vector field v .  

4) There is a one-to-one correspondence 
between local one-parameter groups of 
transformations and their infinitesimal generators. In 
terms of this exponential notation, 

( )[ ] ( ) ( )xvvx=v εδεδ expexp+exp  whenever defined, 
( )x=xv0exp , and 

( )[ ] ( )xv=vxv
d
d

εε
ε exp|exp , (6) 

for all Mx∈ . For a vector field ( ) ii xxv= ∂∂∑ξ  on 
M  and a smooth function R→Mf : ,  using the 
chain rule and relation (6) , 

( )( ) ( )( ) ( )( )xv
x
fxv=xvf

d
d m

i=
i

i εεξε
ε

expexpexp
1
∑ ∂

∂ .  

If v  and w  are vector fields on M , then their 
Lie bracket [ ]wv,  is the unique vector field 
satisfying [ ]( ) ( )( ) ( )( )fv-wfw=vfwv,  for all smooth 
functions R→Mf : .  

5) Let rvv ,,1   be vector fields on a smooth 
manifold M . An integral submanifold of { }rvv ,,1   
is a submanifold MN ⊂ whose tangent space yTN |  
is spanned by the vectors { }yry vv |,,|1   for each 

Ny∈ .  
The system of vector fields { }rvv ,,1   is 

integrable if through every point Mx ∈0  there 
passes an integral submanifold. An integrable 
system of vector fields { }rv,,v 1  is called semi-
regular if the dimension of the subspace of xTM |  

spanned by { }xrx vv |,,|1   does not vary from point 
to point.  

An integrable system of vector fields is regular if 
it is semi-regular, and, in addition, each point x  in 
M  has arbitrarily small neighborhoods U with the 
property that each maximal integral submanifold 
intersects U in a pathwise connected subset. A 
system of vector fields { }rvv ,,1   on M  is in 
involution if there exist smooth real-valued 
functions ( )xc k

ij , Mx∈ , rk=ji ,,1,,  , such that for 

each rj=i ,,1,  , [ ] k

r

k=

k
ijji vc=vv .,

1
∑ .  

Frobenius' theorem, as generalized by Hermann 
to the case when the integral submanifolds have 
varying dimensions, states that this necessary 
condition is also sufficient.  

Theorem 1 (Frobenius' theorem) ([9-10]) Let 
{ }rvv ,,1   be smooth vector fields on M . Then the 
system { }rvv ,,1   is integrable if and only if it is in 
involution.  

In this way, Frobenius' theorem gives necessary 
and sufficient conditions for finding a maximal set 
of independent solutions of an underdetermined 
system of first-order homogeneous linear partial 
differential equations.  

6) For any group element g  of a Lie group G , 
the right multiplication map GGRg →:  defined by 

( ) g=hhRg .  is a diffeomorphism, with inverse
 

( ) 1
1

-
gg R=R - . A vector field v  on G  is called right-

invariant if
 

( ) ( ) hghRhg =v=vvdR
g

|||  for all g  and h  

in G . The set of all right-invariant vector fields 
forms a vector space.  

A Lie algebra is a vector space G  with a bilinear 
operation [ ] GGG →×:.,. , called the Lie bracket for 
G , satisfying the following axioms: 
[ ] [ ] [ ]w,vc+,w,vc+ ′′′′ wv=ccv  and 
[ ] [ ] [ ]w,vc+,w,vc+ ′′′′ wv=ccv , for all R∈′cc, , 
[ ] [ ]vw=-wv ,,  and [ ][ ] [ ][ ] [ ][ ] 0uw,v,+vu,w,+,, =wvu , for 
all wwvvu ′′ ,,,,  in G .  

The flow generated by a right-invariant vector 
field 0≠v  through the identity, namely 

( ) ( )vev=g εεε expexp ≡  is defined for all R∈ε  and 
forms a one-parameter subgroup of G . Conversely, 
any connected one-dimensional subgroup of G  is 
generated by such a right-invariant vector field in 
the above manner.  

7) For each element g  of a Lie group G , 
group conjugation ( ) 1-

g ghghK ≡ , Gh∈ , determines 
a diffeomorphism on G . The differential 
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( )hKhg g
TGTGdK ||: →  is readily seen to preserve the 

right-invariance of vector fields, and hence 
determines a linear map on the Lie algebra of G , 
called the adjoint representation; ( ) ( )vdKvgAd g≡ , 

G∈v .   
Let H  and H~  be connected, s -dimensional Lie 

subgroups of the Lie group G  with the 
corresponding Lie subalgebras H  and H~  of the Lie 
algebra G of G . Then 1~ -=gHgH  are conjugate 
subgroups if and only if ( )HH g ~=Ad  are conjugate 
subalgebras.  

If v  generates the one-parameter subgroup 
( ){ }vεexp , then  vad  is the vector field on G  

generating the corresponding one-parameter group 
of adjoint transformations which 

( )( )wvAd
d
dad ε
ε ε exp|| v 0-w ≡ , G∈w . For each 

G∈v , the adjoint vector  vad  at G∈w  is 
[ ] [ ]wv=-vw=ad ,,| v w .  

8) For a local transformation group G , a 
subset  M⊂Ξ  is called G -invariant and G  is called 
a symmetry group Ξ , if whenever Ξ∈x , and Gg∈  
is such that xg.  is defined, then Ξ∈xg. . If Ξ  be a 
system of differential equations then a symmetry 
group of the system Ξ  is a local group of 
transformations G  acting on an open subset M  of 
the space of transformation independent and 
dependent variables for the system with the property 
that whenever ( )xu=f  is a solution of Ξ , and 
whenever fg.  is defined for Gg∈ , then ( )xfu=g.  
is also a solution of the system.  

Let G  is an n -dimensional Lie algebra of a 
differential system with p  independent variables 
{ }pxxx ,, 21 

 and q  dependent variables 
{ }quuu ,,, 21 

, which is generated by n  vector fields 
{ }nvvv ,,, 21  .  The corresponding n -parameter 
symmetry group of G  is denoted as G , which is the 
collections of transformations 

( )

( )qp

n

i=
ii

qp

uuxxva=

uuxx

,,,,,exp

~,,~,~,,~

11
1

11















∑

 (7) 

for all allowed values of the group parameters. For 
an s -parameter subgroup GH ⊂ , an H -invariant 
solution can be transformed into another one by the 
elements Gg∈  not belonging the subgroup H . 
That is to say, two group invariant solutions are 
essentially different if it is impossible to connect 
them with any group transformation in (7).  

9) An optimal system of a s -parameter subgroups  
of a Lie group G , as a list of conjugacy inequivalent 
s -parameter subgroups with the property that any 
other subgroup is conjugate to precisely one 
subgroup in the list. Similarly, a list of s -parameter 
subalgebras forms an optimal system if every s -
parameter subalgebra of G  is equivalent to a unique 
member of the list under some element of the 
adjoint representation; ( )HH g ~=Ad , Gg∈ . 
 
 

4 Main Result 

For the classification of the group-invariant 
solutions of NSE which satisfies in the first and 
second conditions of Definition 1, it is more 
convenient to work in the space of Lie groups.  

On the other and, the problem of finding an 
optimal system of subgroups is equivalent to that of 
finding an optimal system of subalgebras, and so it 
will concentrate on this on the latter. Although 
some sophisticated techniques are available for Lie 
algebras with additional structure, in essence this 
problem is attacked by the naïve approach of taking 
a general element v  in G  and subjecting it to 
various adjoint transformations so as to simplify it 
as much as possible.  
Theorem 2. Inertial manifolds for NSE can be found 
in the notion of optimal systems of invariant 
solutions of the symmetry group of it, together with 
the coordinate charts result in the decomposition (1) 
of the velocity field of the flow of NSE. 
Proof. As in Definition 1, inertial manifolds are 
finite-dimensional, smooth, invariant manifolds that 
contain the global attractor and attract all solutions 
of dissipative dynamical systems exponentially 
quickly.  

Then, from 9 steps of Section 3, the proof 
reduces to the finding an optimal system of 
subalgebras under the adjoin representation which it 
will be show that this attracts all of the solutions. 

From the final step of Section 3, a family of r -
dimensional subalgebras { } R∈ααg  forms an r -
parameter optimal system named as rO  means that 
any r -dimensional subalgebra is equivalent to some 

αg , αg  and βg  are inequivalent for distinct α  and 

β . Each member rOg ∈α  is a collection of r  linear 
combinations of generators. Also, an optimal system 
of s -parameter group-invariant solutions to a 
system of differential equations is a collection of 
solutions  ( )xu=f  with the following properties:  
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Each solution in the list is invariant under some 
s -parameter symmetry group of the system of 
differential equations. If ( )xfu=

~  is any other 
solution invariant under an s -parameter symmetry 
group, then there is a further symmetry g  of the 

system which maps f
~  to a solution  

~
. ff=g on the 

list. Let ( ) 









≡ ∑∑

n

i=
ii

n

i=
ii vbvawv

11

,, GG  be a general 

two-dimensional algebra, which remains closed 
under commutation.  

In ( )wv,G , two subalgebras { }21, ww  and { }21, ww ′′  
are called equivalent if one can find some 
transformation Gg∈  and some constants 
{ }4321 ,,, kkkk  so that  

( ) ( )22111 wAd+kwAd=kw gg′ ,
( ) ( )24132 wAd+kwAd=kw gg′ .    (8) 

Since 1w′  and 2w′  are linearly independent, it 
requires 03241 ≠k-kkk  in (8) or else 21 w=cw ′′ . Hence, 
to find all the inequivalent elements in the optimal 
system 2O , it is necessary that each member 
{ } 2, Owv ∈  satisfy [ ] 0, =wv  or [ ]=vwv,  which the latter 
case result in 02=k  and 14=k .  

For ∑
n

i=
iiva=w

1
1 , its general adjoint 

transformation matrix A  is the product of the 
matrices of the separate adjoint actions nAAA ,...,, 21 , 
each corresponding to ( ) ( )1exp wAd

ivε , ni= 1  which 
taken in any order ( ) nn AA=AAA  2121 ,,, εεε≡ . 
Hence, the equivalence between { }21, ww ′′  and 
{ }21, ww  shown in (8) can be rewritten as n2  
algebraic equations with respect to nεεε ,,, 21   and 

4321 ,,, kkkk , 

( ) ( )
( )

( ) ( )
( )

( )       . 

  

0
.,,,

,,,,,,
,,,,

,,,,,,

3241

214

21321

212

21121

≠










′′′

′′′

k-kkk
Abbb+k

Aaaa=kbbb
Abbb+k

Aaaa=kaaa

n

nn

n

nn









    

 

(9) 

 

 

If the system (9) have the solution, then 













∑∑
n

i=
ii

n

i=
ii vb=wva=w

1
2

1
1 ,  is equivalent to 













′′′′ ∑∑
n

i=
ii

n

i=
ii vb=wva=w

1
2

1
1 ,  .  

In this way and from 9 steps of Section 3, the 
steps to reach the exact inertial manifolds will be as 
follows 

1) presenting the commutator table, 
2) giving the adjoint representation table of the 

generators { }n
i=iv 1  for a given algebra, 

3) giving the restrictions about 
nn bbbaaa ,,,,,,, 2121  ,  

4) computing adjoint transformation matrix A ,  
5) determining the general equations about the 

invariants φ ,  
6) determining the respective invariants of two 

cases [ ] [ ] 12121 ,,0, =www=ww ,  
7) selecting the corresponding eligible 

representative elements { }21, ww ′′  of 
equations (8) are the steps of the 
construction of two dimensional optimal 
system.  

As the notions of ([1]), ( )1+2 -dimensional Navier- 
Stokes equation can be expressed as the equation 

( ) 0 =+uu-γu-ψu+ψu,+ψu=ψ yyxxxyyxtyyxx  which 
equivalent to  

( ) 02 =+ψψ+ψ-γψ-ψ

ψ-ψψ+ψψ+ψ+ψψ

yyyyxxyyxxxxxyyy

xxxyyyyxxxyxyytxxt    (10) 

The commutator table of the NSE is 
 

Table 1. Commutator table of the NSE, [6] 
 
 
 
 
 

 
 
 
 
 
 
 
 
where the associated vector fields for the one-
parameter Lie group of NSE (10) are given by 

 1v  2v  3v  4v  

1v  0  2-v  3v  0  

2v  2v  0  4v  0  

3v  3-v
 

4-v  0  0  

4v  0  0  0  0  
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( ) ( ) ( ) ( ) ψψ

ψ

∂′∂∂′∂∂∂

∂∂∂∂∂∂∂

xtg+t=gvytf-t=fv+x=-y

v+yx++xt=-ytv=v+ty+x=v

yxyx

yxttyx

65

4

22

321

,,

,
2

,,
22

and ( ) ψ∂t=hv7 .   
 

Table 2. The adjoint representation table of the NS 
equation, [6] 

 

Ad  1v  2v  3v  4v  

1v  1v  2veε  3ve-ε  4v  

2v  21 v-v ε  2v  43 v-v ε  4v  

3v  31 v+v ε  42 v+v ε  3v  4v  

4v  1v  2v  3v  4v  
 

So 



























































































1000
00

00
1

1000
0100
0010
0001

1000
0100

010
001

1000
100

0010
001

1000
000
000
0001

2

3

3232

3

3

2

2

4321

11

11

1

1

ε
ε
εεεε

ε
ε

ε

ε

εε

εε

ε

ε

--

-

-ee
ee
--

=

-

-

e
e

=

AAAA=A

 

is the general adjoint matrix. Then substituting 

∑
4

1
1

i=
ii va=w , ∑

4

1
2

i=
iiva=w into [ ] 121, w=ww δ  result to 

the two-dimensional optimal system 
 

Table 3. Two-dimensional optimal system of NSE, [6] 

Case Result 

Not all 1a  

and 1b  are 
zeros 

1

1

1

3
3

1

2
22

1

132
2
14

4

13
1

3241
211

,,

,,,

ε

ε

ε

ε

ea
a

=-

a
ae=

a
ba-aab

=k

=bk
a

a-aaa
=k=ak

′

′′′

 

011 ==ba  02332 =b-aba  

Not all 1a  

and 1b  are 
zeroes and 

02 ≠a  

If 03=a  

then 
423423

423221

11

11

,

,,

+bb=ekb=ek

+aa=eka=ek

ε

ε
εε

εε

′′

′′
 

If 032 >aa  then 

( )

( )

4

223
2

3
42

2

3
3

4223
2

3
2

2
2

3
1

,

,

,

+b

b-
a
a

=kb
a
a

=k

+aa-
a
a

=k

a
a
a

=k

εε

εε

′′

′

′

 

If 032 <aa  then 

( )

( )

4

223
2

3
42

2

3
3

4

223
2

3
22

2

3
1

,

,

,

+b

b+
a
a

=kb
a
a

-=k

+a

a+
a
a

-=ka
a
a

-=k

εε

εε

′′

′′

 

022 ==ba  
432433

432231

11

11

,

,,

+bb=-ekb=ek

+aa=-eka=ek
--

--

ε

ε
εε

εε

′′

′′
 

033 ==ba  Lie algebra { }4444 , vbva  is trivial. 
 

On the other hand, these Lie algebra notions and 
commutator relations are suitable for the attraction 
property, the third property, of the inertial manifold. 
Finally, of Theorem 1, it can be conclude that if 
{ }nvv ,,1   be an integrable system of vector fields 
such that the dimension of the span of  { }xnx vv |,,|1   
in xTM |  is a constant s , independent of Mx∈ , 
then for each Mx ∈0  there exist flat local 
coordinates ( )myyy= ,,1

  near 0x  such that the 
integral submanifolds intersect the given coordinate 
chart in the slices { }m-s

m-s=cy=cyy ,,: 1
1

 . Also,  
m-scc ,,1   are arbitrary constants which specially 

give one the representation (2).  
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Corollary 1. For a semi-regular (and therefore for 
a regular) system the decomposition (1) can be 
reduced to the direct sum. 

If G  act semi-regularly on the m -dimensional 
M  with s -dimensional orbits and Mx ∈0 , then by 
Frobenius' theorem, there exist precisely m-s  
functionally independent local invariants 

( ) ( )xx m-sζζ ,,1
  defined in a neighbourhood of 0x . 

Moreover, any other local invariant of the group 
action defined near 0x  is of the form 

( ) ( ) ( )( )xx=Fx
m-s

ζζζ ,,1
  for some smooth function 

F . On the other hand, any semi-regular system can 
be made regular, by restriction to a suitably small 
open subset of M . If the action of G  is regular, 
then the invariants can be taken to be globally 
invariant in a neighbourhood of 0x .  

Then the coordinate chart can be chosen so that 
each integral submanifold intersects it in at most one 
such slice. Then as structure of the proof of 
Theorem 2, it can be obtained the direct sum of 
relation (1) which specially give one the more exact 
coordination for the linearization of NSE. 
 
 

5 Conclusion    
In this paper, a novel methodology was presented to 
find the inertial manifolds of the Navier-Stokes 
equation (NSE) by developing a reformulation 
based on differential and Lie groups. For this 
purpose, some geometric notions about group-
invariant solutions, commutator relation, adjoint 
representation, two-dimensional optimal systems of 
NSE studied.  

The machinery of Lie algebra theory was applied 
to provide a systematic method to search for these 
special group invariant solutions. This geometric 
approach gives one more concepts of NSE and 
specially, covered all of the properties of inertial 
manifolds of positively invariant, exponentially 
attraction of all orbits.  

The main advantage of the proposed 
methodology is that it outperforms the numerical 
estimation approach for approximate solution of 
inertial manifolds since it provides the exact 
solution of the problem and, thus, it yields better 
results than those obtained through numerical 
estimation.  

Also, in general case, our Lie algebraic structure 
results to the reduction theory for simplification of a 
system of differential equations with fewer variables 
which are more easily solved in principal than those 
PDEs. 
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